Preparation and X-Ray Structure of (Se₉Cl)(SbCl₆): A Seven-membered Selenium Ring

Romolo Faggiani, Ronald J. Gillespie,* Joseph W. Kolis, and Kailash C. Malhotra

Department of Chemistry, McMaster University, Hamilton, Ontario, Canada L8S 4M1

The new compound (Se₉Cl⁺)(SbCl₆⁻) prepared by the reaction of selenium with NOSbCl₆ in SO₂ contains the first example of a seven-membered selenium ring.

Although S_7 and several compounds containing sevenmembered sulphur rings have been described,¹ no corresponding Se_7 rings have been reported.² There is evidence for the formation of Se_7 in the gas phase³ and it appears that in CS_2 solution⁴ Se_7 is in equilibrium with Se_6 and Se_8 but neither Se_7 nor any derivatives have been isolated. We report here the first example of a seven-membered selenium ring.

The cations Se_4^{2+} , Se_8^{2+} , and Se_{10}^{2+} have been prepared by oxidizing elemental selenium with oleum, $S_2O_6F_2$, AsF_5 , or SbF_5 .⁵ However, even using excess of selenium, no cations containing a larger number of selenium atoms have been isolated. In particular, there is no evidence for the existence of Se_{19}^{2+} corresponding to S_{19}^{2+} , which is formed when excess of sulphur is oxidized by AsF_5 ,⁶ although Se_n^{2+} cations (n > 10)have been postulated in molten salt systems.⁷ Thus we were prompted to investigate the reaction of selenium with the mild oxidant NOSbCl₆ in solution in the hope of obtaining a Se_n^{2+} (n > 10) cation. The product of the reaction, however, was not an Se_n^{2+} cation but the novel compound $(Se_9Cl)(SbCl_6)$, which contains the Se_9Cl^+ cation.

The title compound was prepared by adding 0.491 g (0.357 mmol) of grey selenium and 0.201 g (0.714 mmol) of NOSbCl₆ to a double ampoule containing a frit and a Teflon stirrer bar.

Figure 1. View of Se₉Cl⁺ showing the chair conformation of the ring with the Se₂Cl in the *endo* position. Selected bond distances and angles: Se(1)–Se(2) 2.342 (4), Se(1)–Se(3) 2.324 (4), Se(2)–Se(4) 2.309 (5), Se(3)–Se(5) 2.341 (5), Se(4)–Se(6) 2.367 (4), Se(5)–Se(7) 2.270 (4), Se(6)–Se(7) 2.430 (4), Se(6)–Se(8) 2.466 (4), Se(8)–Se(9) 2.233 (5), Se(9)–Cl 2.208 (10); Se(2)–Se(1)–Se(3) 103.7(2), Se(1)–Se(3)–Se(5) 100.3(2), Se(3)–Se(5)–Se(7) 104.4(1), Se(5)–Se(7)–Se(6) 106.0(1), Se(7)–Se(6)–Se(4) 106.9(1), Se(2)–Se(4)–Se(6) 105.2, Se(1)–Se(2)–Se(4) 102.4(2), Se(7)–Se(6)–Se(8) 99.8(1), Se(6)–Se(8)–Se(9) 101.9(2), Se(8)–Se(9)–Cl 103.6(3).

The compound (Se₉Cl)(SbCl₆) consists of a discrete cation $(Se_9Cl)^+$ and a well separated $(SbCl_6)^-$ counter ion. The cation has a seven-membered selenium ring with an Se₂Cl chain attached to the 6 position of the ring.[†] The ring is in the chair form (see Figure 1) with short and long Se-Se bonds alternating in length around the ring and varying from 2.270(4) to 2.430(4) Å. This alternation in bond length is a common phenomenon in sulphur and selenium rings and has been discussed by several authors.^{6,8,9} The average Se-Se distance in the ring is 2.340(4) Å which is comparable to other Se rings $[e.g., 2.32(1) \text{ Å in } (Se_8)(AlCl_4)_2]^{10}$ The longest bond in the ring is between Se(6) and Se(7). This is also the longest bond in comparable S_7 rings. The unusual length of this bond has been attributed to the repulsion between eclipsed lone pairs on atoms 6 and 7.8,11 The longest bonds are to the three-co-ordinated selenium atom [S(6)] as is commonly found in other cationic sulphur and selenium rings.

The shortest cross-ring interaction is 3.769(5) Å which is much longer than other transannular Se–Se bonds (e.g., 2.789 Å in Se₈²⁺),¹⁰ so there appears to be little, if any, cross-ring interaction. The average of the angles in the ring is 104.2° which is typical for seven membered rings (e.g., 104.7° in S₇I⁺).¹²

The only previously reported examples of functionalized selenium rings are Se_6I^+ , $Ph_2Se_6^{2+}$, and $Se_6I_2^{2+}$ which contain six-membered selenium rings.^{13–15} But functionalized S_7 rings have been found in S_7O ,¹¹ (S_7I)(AsF₆),¹² (S_{19})(AsF₆)₂,² and [(S_7I)₂I](SbF₆)₃.¹⁶ The ions S_{19}^{2+} and (S_7I)₂I³⁺ contain S_7

† Crystal data: crystals were sealed in Lindemann capillaries under dry nitrogen. M = 1080.6, Se₉Cl₇Sb, monoclinic, space group $P_{2_1/n}$ (nonstandard setting of No. 14), a = 12.042(1), b = 12.44(1), c = 14.497(1) Å, $\beta = 115.03(1)^\circ$, U = 1968(1) Å, Z = 4, F(000) = 1903, μ (Mo- K_{α}) = 201.8 cm⁻¹, $D_c = 3.64$ g cm⁻³. Accurate cell parameters were obtained from 15 well centred reflections $20^\circ < 20 < 30^\circ$ using a Syntex P2₁ monochromatized diffractometer [λ (Mo- K_{α}) = 0.71069 Å]. Data were collected to $2\theta = 50^\circ$ for a total of 3860 reflections. Lorentz and polarization corrections and averaging ($R_{int} = 0.025$) gave 3091 unique reflections. The structure was solved by direct methods using the SHELX 76 package. After anisotropic displacement parameters were applied the structure refined to R = 11.7% for all reflections and R = 0.0708 ($\omega R = 0.0755$) for 1849 reflections with $F > 3 \sigma(F)$.

Atomic co-ordinates, bond lengths and angles, and thermal parameters have been deposited at the University of Bonn. See Notice to Authors, Issue No. 1.

rings bridged by S_5 and I respectively. In both cases, the bridging group is in the 6 position and it is *endo* as is the Se₂Cl group in the title compound.

The Se₉Cl⁺ ions are well separated but there is a fairly close contact between the Se(1) atom and the Se(8) atom of a neighbouring cation [Se–Se 3.357(4) Å]. The SbCl₆⁻ group is normal [average Sb–Cl distance 2.363(10) Å]. There are several long Se · · · Cl–Sb contacts, the shortest being 3.358(9) Å for Se(3)—Cl(4).

The Se₉Cl⁺ ion is strikingly similar to a fragment of $S_{19}^{2+.6}$ It is possible that Se_{19}^{2+} is formed initially, as in the oxidation of sulphur to S_{19}^{2+} , then an Se–Se bond of the bridging chain is oxidatively cleaved to form Se_9Cl^+ . The active oxidant may be trace SbCl₅ resulting from an equilibrium such as NOSbCl₆ \rightleftharpoons NOCl + SbCl₅. This is supported by the observation that selenium metal and NOSbF₆ do not appear to react under the same conditions.

We thank the Natural Sciences and Engineering Research Council of Canada for support of this work.

Received, 28th July 1986; Com. 1066

References

- 1 R. Steudel, R. Reinhardt, and F. Schuster, Angew. Chem., Int. Ed. Engl., 1977, 10, 715.
- 2 R. Steudel and E. M. Strauss, *Adv. Inorg. Radiochem.*, 1984, 28, 135.
- 3 H. Fujisaki, J. B. Westmore, and A. W. Tickner, *Can. J. Chem.*, 1966, **44**, 3063.
- 4 R. Steudel and E. M. Strauss, Z. Naturforsch., Teil B, 1981, 36, 1085.
- 5 R. J. Gillespie, Chem. Soc. Rev., 1979, 8, 315.
- 6 R. C. Burns, R. J. Gillespie, and J. F. Sawyer, *Inorg. Chem.*, 1980, **19**, 1423.
- 7 R. Fehrmann and N. J. Bjerrum, Inorg. Chem., 1977, 16, 2089.
- 8 J. Passmore, G. Sutherland, P. Taylor, T. K. Whidden, and P. S. White, *Inorg. Chem.*, 1981, **20**, 3839.
- 9 R. Steudel and F. Schuster, J. Mol. Struct., 1978, 44, 143.
- 10 R. K. McMullan, D. J. Prince, and J. D. Corbett, Inorg. Chem.,
- 1971, 10, 1749.
- 11 R. Steudel, R. Reinhardt, and T. Sandow, Angew. Chem., Int. Ed. Engl., 1977, 10, 716.
- 12 J. Passmore, P. Taylor, T. K. Whidden, and P. White, J. Chem. Soc., Chem. Commun., 1976, 689.
- 13 W. A. Shantha Nandana, J. Passmore, and P. S. White, J. Chem. Soc., Chem. Commun., 1983, 526.
- 14 R. Faggiani, R. J. Gillespie, and J. W. Kolis, J. Chem. Soc., Chem. Commun., 1987, following communication.
- 15 J. Passmore, P. S. White, and C. M. Wong, J. Chem. Soc., Chem. Commun., 1985, 1178.
- 16 J. Passmore, G. Sutherland, and P. S. White, *Inorg. Chem.*, 1982, 21, 2717.